The generator matrix

 1  0  1  1 X^2  1  1  1 X^2+X  1  1  0 X+2  1  1  1  1 X^2  2  1  1  1  1  2  1  1  X  1  1 X^2+X+2  1 X+2  0  1  1 X+2  1  1 X^2+X  1 X^2+X X^2  1  1  1  1  0  1  1 X^2+2  1 X^2+X+2  1  2  X  1  1  1 X^2+X+2  1 X+2  1 X^2+2  1  1 X^2+2  1  1  1  1  1  X  1  1  1
 0  1  1 X^2+X  1 X^2+X+1 X^2  3  1 X+1 X^2+X+2  1  1  0 X^2+3  2  3  1  1  X X+1 X^2+X X+3  1 X^2 X^2+1  1 X^2+X+3 X^2+2  1  1  1  1  X X^2+3  1 X+1 X^2+2  1 X+2  1  1  0  3 X^2+2 X+2  1 X^2+X+1 X+1  X X^2+X  1 X^2+X  1 X^2+2 X^2+1  0 X^2+2  1 X^2+2  1 X^2+X+3  1  0 X+2  1 X^2 X^2+X+2 X^2+X+2 X^2+3 X^2+1  1  3 X^2+X  2
 0  0  X  0 X+2  X X+2  2  0  2 X+2 X^2+X+2 X^2 X^2+2 X^2+2 X^2+X+2 X^2+X+2 X^2+X X+2 X^2 X^2+X X^2+X X^2 X^2 X^2 X^2+X  X X^2+2 X^2+X  2 X^2 X^2+X+2  2 X^2+X+2  0 X^2+2 X+2  0  X  2 X^2+X X^2+X  X X^2+X X^2+2  X X^2+2  0 X^2+X X^2+2 X^2+2 X^2+X+2  0 X+2  2  X  0 X+2 X^2+2 X^2+X  0  2 X+2 X^2 X^2+X  0  X X^2  X  X X+2 X^2+2  2  X  0
 0  0  0  2  0  2  2  2  2  0  0  2  2  0  2  2  0  0  2  2  2  0  0  0  2  2  0  2  0  0  0  2  2  2  0  0  2  2  2  0  0  2  0  2  0  2  2  2  0  2  2  2  0  0  2  2  2  0  0  2  2  0  2  2  0  2  2  0  2  0  2  2  0  0  0

generates a code of length 75 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 71.

Homogenous weight enumerator: w(x)=1x^0+366x^71+571x^72+498x^73+435x^74+560x^75+386x^76+464x^77+444x^78+198x^79+63x^80+54x^81+15x^82+4x^83+2x^84+12x^85+8x^87+12x^89+1x^90+1x^98+1x^104

The gray image is a code over GF(2) with n=600, k=12 and d=284.
This code was found by Heurico 1.16 in 0.625 seconds.